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A numerical study has been conducted to determine the various modes of 
Taylor-Couette flow that exist between concentric vertical cylinders, as the aspect 
ratio f (height to gap width, H l d )  and the Reynolds number Re (based on the inner 
cylinder speed) are varied. Furthermore, the effects of the introduction of buoyancy 
on the development of the flow are examined. This is accomplished by considering 
both cylinders to be isothermal, with the rotating inner cylinder a t  a higher 
temperature than the stationary outer cylinder. Results are presented for a wide 
range of the Grashof number Gr (based on the temperature difference AT across the 
annular gap). The structure of the Taylor vortices is observed to be distorted 
considerably with the buoyant flows, and the nature of the onset and subsequent 
development of the vortices is altered. The hysteresis between the different modes of 
cellular flow, characteristic of the bifurcation phenomena, is also substantially 
modified. 

1. Introduction 
The bifurcation phenomena occurring in the Taylor problem have been examined 

in great detail during the last ten years (a good review of the general Taylor problem 
can be found in DiPrima & Swinney 1985). In  the idealized model of Taylor-Couette 
flow, where the annulus is infinitely long, periodic flows arise from symmetric 
supercritical bifurcations in the circular Couette-flow solution. With realistic (finite) 
end conditions, however, the symmetry of the bifurcations is broken. I n  an attempt 
to improve upon the inadequacy of the idealized model, Benjamin (1978a) used the 
abstract mathematical theory of Leray-Schauder to include the end effects associated 
with a finite-length annulus in his analysis of the Taylor problem. Benjamin 
considered the dependence of the flow on two parameters, one the Reynolds number 
Re and the other the (non-dimensional) height f of the annulus. He predicted the 
existence of a hysteresis of the primary-flow locus, which accompanies the 
morphogenesis of the cellular structure as Re is varied through critical values of 

The various modes of cellular flow are characterized by the number of Taylor cells 
present. For a part.icular range o f f ,  a unique mode with an even number of cells 
emerges as the primary flow as the speed of the inner cylinder is gradually increased 
from rest. Other cellular flows are also realizable as secondary modes, a t  values o f f  
for which another flow is primary. These flows are only stable at values of Re larger 
than the critical value of Re for the development of the primary flow from the resting 
state. These secondary modes can be achieved by giving the system an impulsive 

r. 
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start to the desired speed of rotation. As the rotational speed is subsequently 
decreased, a critical value of Re is reached where the secondary mode collapses 
catastrophically into the primary mode. The form of this exchange between the 
primary and secondary modes is characterized by a cusp in the (Re,r)-control 
plane. 

i n  il series of accompanying experiments, Benjamin (19783) was able to verify his 
theoretical predictions. Using a Taylor apparatus with a radius ratio of 7 = 0.615, 
Benjamin varied the aspect ratio r o v e r  the range 3.4 < r < 4.0. At the lower values 
of this range, two Taylor cells were observed to develop as the Reynolds number was 
gradually increased from rest, while four cells developed a t  the upper values. The 
exchange of priorities between the two-cell state and the four-cell state as the 
primary flow occurs in this range, and the locus of critical values for the stability of 
the two flows was found to be a downward-facing cusp in the (Re, r)-plane. 

Schaeffer (1980) proposed a model problem to study analytically the boundary 
effects and bifurcation phenomena observed by Benjamin. Hall (1980, 1982) 
extended Schaeffer’s analysis by using perturbation methods, and verified that the 
model can predict the form of the exchange between the primary and secondary 
modes. In  particular, Hall was able to predict the form of the exchange of stability 
between the four-cell and six-cell states, namely, an upward-facing cusp. 

In  a subsequent series of experiments, Mullin, Pfister & Lorenzen (1982) and 
Mullin (1982) extended Benjamin’s findings to higher values of r, covering the 
exchange of priorities between the four-cell state and the six-cell state. As predicted 
by Hall, the stability locus was found to be an upward-facing cusp. Mullin also 
presented results for the 6-8, 8-10, and 10-12 cell transitions occurring at 
increasingly higher values of the aspect ratio, which were broadly in accord with the 
ideas proposed by Benjamin. 

An essential factor in the primary-flow exchange process is the multiplicity of 
distinct steady flows, all of which can exist on the same boundary conditions. 
Benjamin & Mullin (1981) present experimental observations of many of these 
secondary modes, in the context of their earlier works. Some of the possible flows 
observed in the studies dealing with the multiplicity of the Taylor-cell states have 
been termed anomalous modes, since they can only occur a t  sufficiently high 
Reynolds numbers and always collapse as Re is gradually reduced. These steady, 
secondary states are characterized by a direction of rotation opposite to that of the 
stable flows occurring a t  lower Re; namely, the flow adjacent to the ends is in the 
outward direction (from the inner cylinder towards the outer cylinder). The jet-like 
flow structure occurring between the pairs of cells is consequently an inward flow, 
which is opposite to  the normal Taylor-cell states. Frequently, the total number of 
cells in an anomalous mode is odd. Cliffe (1983) complemented these experimental 
results by presenting numerical solutions for these flows a t  small aspect ratios. 

Anomalous modes were first observed in relatively short annuli. However, these 
effects are intrinsic to the hydrodynamic stability problem, and can be expected to 
be important in any Taylor apparatus, no matter how long it is. Benjamin & Mullin 
(1982) presented further experimental results, showing as many as twenty different 
stable steady flows in a moderately long Taylor apparatus. Lorenzen & Mullin (1985) 
obtained experimental evidence of up to forty anomalous cells, and concluded that 
the finite length of the annulus plays a crucial role in determining the overall 
stability of the flow. Hughes et al. (1985) were able to successfully predict a variety 
of these secondary flows using a finite-difference method. However, they did not 
investigate the hysteresis phenomenon predicted and observed by Benjamin. Cliffe 



Bifurcation phenomena, in Taylor-Couettr flow with buoyuncy effects 481 

& Mullin (1985) also performed numerical calculations of the anomalous modes, and 
their predictions compared favourably with new experimental data, which they also 
presented . 

The first numerical predictions of the hysteresis effects predicted by Benjamin 
(19784 and observed by Mullin (1982) were presented by Jones & Cliffe (1983). They 
studied the exchange process between a four-cell and a six-cell flow, by utilizing the 
finite-element method together with continuation methods designed especially for 
tracking bifurcating solutions. They also performed a limited number of finite- 
difference calculations to confirm their results a t  selected parameter values. They 
obtained substantial agreement with the experimental results of Mullin (1982). Cliffe 
(1988) extended this work to include the two-four cell exchange, and also provided 
a detailed study of the stability of those solutions. 

In all of these previous studies, the flows considered were isothermal. The influence 
of buoyancy on the behaviour of the Taylor-Couette flow was not studied. However, 
rotating flows which are not isothermal occur in a variety of technological 
applications, such as the cooling of conventional rotating machinery (Krieth 1968) or 
chemical vapour deposition (CVD) processes (Bettes 1982 ; Singer 1984 ; Bollen 1978). 
Buoyant rotating flows also have many geophysical applications, including oceanic 
and atmospheric circulation, and hence play important roles in developing weather 
patterns (Greenspan 1968). 

In  spite of their technological importance, comparatively little work has been 
directed toward the study of the mixed convection flows within rotating cylindrical 
annuli. The first attenpts to study this problem were primarily experimental, and 
were usually coupled with an axial flow through the annular gap. The primary thrust 
of these early studies was to determine the overall heat transfer rates across the 
annular gap, and little information regarding the hydrodynamic stability of the flows 
was given (Kaye & Elgar 1958; Gazley 1958; Bjorklund & Kays 1959; Becker & 
Kaye 1962a). 

Later theoretical studies focused on the stability of the circular Couette flow in the 
presence of a radial temperature gradient (Becker & Kaye 19826; Walowit, Tsao & 
DiPrima 1964; Fung & Kurzweg 1975). With the inner cylinder rotating, it was 
concluded that a positive gradient of temperature across the annular gap (i.e. a 
heated outer cylinder and a cooled inner cylinder) is destabilizing, while a negative 
temperature gradient is stabilizing. This can be explained by noting that a greater 
centrifugal force is exerted on a heavier (cooler) fluid particle. Thus, fluid particles 
adjacent to a cooled inner cylinder would have a greater tendency to  be displaced by 
the rotating flow. In  these analyses, the gravity force (buoyancy) was neglected. 
Walowit et al. (1964) justified this seemingly severe restriction by noting that in the 
conduction regime (Gr < lo3), natural convection has little effect on the heat 
transfer, and can therefore be expected to have little effect on the stability of the 
flow. However, Snyder & Karlsson (1964) concluded that the axial flow induced by 
buoyancy does, in fact, have a significant influence on the stability of the flow. They 
found that both positive and negative radial gradients of temperature are stabilizing, 
provided that the magnitude of AT is small. For larger AT, a spiral form of instability 
was observed (see also Snyder 1965 and Karlsson & Snyder 1965). More recent 
experimental studies have also confirmed the stabilizing effects of a positive density 
gradient (Withjack & Chen 1974; Gardiner & Sabersky 1978). 

It should be mentioned that spiral solutions can occur in other configurations of 
the Taylor apparatus, notably in systems with an axial flow superimposed and in 
systems with both cylinders rotating. For the first configuration, see for example 
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Astill (1964) or more recently Wan & Coney (1982). The latter case is currently being 
investigated by a number of researchers. Andereck, Liu & Swinney (1986) conducted 
extensive experiments with independently rotating cylinders, and have mapped the 
18 principal flow regimes they observed while varying the inner- and outer-cylinder 
Reynolds numbers. I n  a theoretical study using bifurcation theory, Chossat, Demay 
& Iooss ( 1985) found spiral solutions resulting from symmetry-breaking bifurcations, 
which are consistent with the experimental results cited above (see also Demay & 
Iooss 1984 and Chossat & Iooss 1985). 

Only recently have any numerical studies been reported in the literature for the 
mixed convection flows in a rotating annulus. Leonardi, Reizes & de Vahl Davis 
(1982) and de Vahl Davis, Leonard & Reizes (1984) presented the results of finite- 
difference calculations for axisymmetric, vertical annuli with short to moderate 
aspect ratios. A taller annulus was considered by Ball & Farouk (1986, 1987). These 
studies concentrated on the overall flow patterns and heat transfer rates. No detailed 
information regarding flow bifurcation was given, although some results regarding 
the development of the secondary flow and its effects on the heat transfer mechanism 
were given by Ball & Farouk (1987). 

While there are numerous results available for the hydrodynamic stability of the 
isothermal flows, the mutual interactions between both the buoyancy and rotational 
forces and the subsequent effects on the stability of the flows has yet to be adequately 
treated and fully described. The present study is a step in this direction (see also Ball 
1987). 

2. Mathematical formulation 
The geometry considered consists of a smooth, heated isothermal vertical cylinder 

of radius R, enclosed by a concentric isothermal cylinder of radius R, to form an 
annulus. The annulus is capped by smooth, adiabatic horizontal endplates. Both the 
outer cylinder and the endplates are fixed and stationary, while the inner cylinder 
rotates with an angular velocity SZ. The geometry is specified by the radius ratio 
7 = R,/R, and the aspect ratio r = H / d ,  where d is the gap width R,-R,. The 
problem geometry is shown in figure 1. It is noted that the inner cylinder will always 
be on the right for all results presented in this paper. 

The fluid considered is air, with a Prandtl number of Pr = 0.7 (where Pr = v/a, the 
ratio of the kinematic viscosity of the fluid to its thermal diffusivity). The usual 
Boussinesq approximation is applied. The Boussinesq approximation remains valid 
in rotating flows when the centrifugally induced pressure difference effects on the 
density may be neglected. The criterion used to determine this is that  the 
acceleration ratio A ,  defined as the ratio of the characteristic centrifugal accelera- 
tion to the acceleration due to gravity, should be small compared with unity: 
A = (sZ2Ri)/g < 1.  For all results presented, A < 0.03. 

In the mixed convection system, the regions of stability of the resulting flows are 
quantified in terms of the Grashof number Gr = gpATd 3 /v2  (where p is  the volumetric 
coefficient of thermal expansion) and the Reynolds number Re = ( R i a )  d l v .  The 
Grashof number characterizes the buoyancy force, while the Reynolds number 
characterizes the rotational (centrifugal) force. Of particular interest is the ratio 
Gr/Re2, denoted by v ,  which indicates the relative importance of the buoyancy and 
rotational effects. This parameter can be determined from an order-of-magnitude 
analysis of the governing equations for mixed convection flows (cf. Holman 1981). 
For values of r near unity, the two forces are of similar magnitude. 
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f = H / d ;  7 = RJR0 

FIGURE 1. Problem geometry. 

The flows under consideration are assumed to  be axisymrnetric over a wide range 
of both the Reynolds and Grashof numbers, and are therefore readily accessible to 
numerical solution. Snyder and Karlsson presented experimental observations for 
the small-gap annulus (d  = 0.267 em, with 2d/(Ri+R,) + 1)  with a radial thermal 
gradient imposed upon the flow (Snyder & Karlsson 1964; Snyder 1965; Karlsson & 
Snyder 1965). They reported that a spiral form of the Taylor-vortex flow occurs when 
the gradient across the gap, A T l d ,  exceeds f 5  "C/cm. In the present study, the 
thermal gradients considered were of the order of 1 "C/cm across the 5 cm gap, and 
it is expected that these flows will also remain axisymmetric. This assumption was 
largely corroborated by the flow-visualization studies discussed in Ball ( 1987), where 
the spiral mode of flow was observed to occur over an extremely small range of the 
rotational parameter g (approximately 0.3 > cr > 0.1). 

2.1. Governing equations 
The Navier-Stokes and energy equations, together with the continuity equation, 
completely describe the physics of the problem. I n  cylindrical polar coordinates, for 
an axisymmetric flow, the equations are 

(1) 

(2) 

au au au v2 1 ap ( a 2 u  1 au u a Z U  

at ar az r po ar ar2 r ar r2 az2 -+u-+w---=--+v ---+ ---- +-), 

av av av uv 
at at aZ r 
-+u-+w-+-=v 
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-+u-+w- = 
at ar az 
aw aw aw 

(3) 

These equations are transformed into the stream function-vorticity form by 
intoducing the stream function $ and vorticity w as follows: 

d 2 / v  as the 
of coupled, 

aw 

The equations are made dimensionless by using the gap width d as the lengthscale, 
timescale, and the temperature difference (q -To). The resulting system 
elliptic equations to be solved is 

2.2. Boundary conditions 
The value of the stream function $ along all boundaries must be a constant, due to 
the no-slip condition at an impermeable wall. This value was taken to be zero. The 
swirl-velocity component is equal to zero at both the endplates and the outer 
cylinder, which are stationary. The inner cylinder rotates with an angular speed 0, 
so the non-dimensional swirl velocity there becomes the Reynolds number Re. It is 
noted that the corners of the computational domain do not enter the calculations in 
the discretization scheme chosen. Therefore, no problems are encountered with any 
discontinuities in the boundary conditions. 

An expression for the vorticity boundary condition can be obtained by expanding 
the stream function near the surface using a three-term Taylor series expansion and 
by making use of the continuity and no-slip conditions: w = -2.0$nw/(An)2/r,, 
where $,,w is the value of $ a t  the near-wall node (adjacent to the wall), An is the non- 
dimensional distance of the near-wall node from the wall, and rw is the value of the 
normal coordinate a t  the wall node being calculated. Finally, the non-dimensional 
temperature a t  the inner wall is T = 1 and a t  the outer wall T = 0, with both 
endplates taken to be adiabatic. 
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2.3. Solution procedure 
The resulting four coupled elliptic equations (for stream function, vorticity, swirl 
velocity, and temperature) are discretized by using a control-volume based finite- 
difference method (for a discussion of the control-volume method, see for example 
Gosman et al. 1969). A line-by-line tridiagonal matrix algorithm is used together with 
a successive substitution technique to solve the finite-difference equations along with 
the prescribed boundary conditions. A fully implicit scheme was used to obtain the 
transient solutions, and the convective-diffusive terms were discretized using a 
hybrid method (Patankar 1980). 

In this study, 21 grid points were used in the radial direction, while the number 
of grid points in the axial direction was varied with the changing aspect ratio r so 
that a minimum density of 1 2 r  points was maintained. A grid independence study 
was used to determine the smallest possible grid size that would still produce 
accurate solutions. An additional check on the grid size was made by computing the 
grid PBclet numbers Pe for several ‘worst case’ runs (where the Pkclet number is 
defined as the ratio of the convection to diffusion terms, cf. Patankar 1980). In these 
cases, all but a very few (less than 5 %) of the nodal points had grid PBclet-number 
values of less than two. Of those that were higher than two, none exceeded Pe = 3.0. 
Thus, for all intents and purposes, the hybrid scheme was reduced to a central- 
difference scheme. All computations were performed on a CRAY X-MP super- 
computer. 

3. Results 
I n  the present study, two sets of results will be considered, with 7 = 0.5 in both 

cases. The first results examined will be those for the two-cell to four-cell transition 
occurring for small values of the aspect ratio r, and the second results presented are 
for the four-cell to six-cell transition occurring in the range of aspect ratio where 
r > 4.2. I n  both cases, the isothermal results will be discussed first and compared to 
the available previous studies. Then, new results showing the effect of the buoyancy 
forces will be discussed, highlighting the differences in the nature of the exchange 
process and the transitions to different modes of flow. 

It is noted that the Prandtl number only becomes a parameter of the mixed 
convection system through the energy equation, (11) .  Thus, even though the 
previous studies were not conducted in air, comparisons with those isothermal results 
should not be affected by the differing values of Pr encountered. Prandtl-number 
effects on the buoyant flows will not be considered in this paper. 

3.1. The two-cell to four-cell transition 
The purpose of the first series of computations was to determine the primary flow 
locus for the isothermal flow, so that a comparison with the experimental results 
presented by Benjamin (1978b) for the bifurcation set in the (Re, I)-plane for two- 
cell and four-cell flows could be made. I n  this way, the procedure used and the 
accuracy of the results obtained could be verified. It was especially desired to  predict 
the qualitative nature of the exchange, as determined from the shape of the primary- 
flow locus. A close quantitative agreement was not expected since the radius ratio 
used in this study (7 = 0.5) is different from that used by Benjamin (7 = 0.615). 

I n  figure 2, the experimental results of Benjamin have been reproduced, and are 
compared with the finite-difference predictions made in this study. To generate the 
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FIGURE 2. Bifurcation set for the isothermal (Gr = 0) two-cell and four-cell flows. 

primary-flow locus numerically, the following procedure was used. First, the bottom 
portion of the locus was determined by a series of impulsive runs, in which the initial 
values of all variables throughout the entire computational domain were set equal to 
zero. The single exception to this, of course, was a t  the boundary of the inner 
cylinder, which corresponded to the desired Reynolds number. If the steady-state 
results obtained from an impulsive start at any particular values of r and Re 
consisted of two cells, then Re was increased and the run was repeated. Conversely, 
if the steady-state results consisted of four cells, Re was decreased and the run was 
repeated. Eventually, the critical value of the Reynolds number was determined 
through this iterative procedure. The maximum increment or decrement in Re used 
to determine the critical value was 5 .  As the critical value was approached, a limit- 
cycle behaviour was observed, whe1.e the time required to reach the steady state 
increased dramatically. This behaviour was also noted by Jones & Cliffe (1983). 

Once the lower portion of the locus was determined, the upper part was found by 
gradually increasing the aspect ratio r a t  fixed values of the Reynolds number Re. 
The calculations were started using the results of the two-cell solution found a t  
values of r just below the lower part of the locus, and r was increased in intervals 
of 0.05. At all stages, the solution from the neighbouring (lower) value of r wits used 
as the initial values for the next computation, which was allowed to proceed until a 
steady-state solution was obtained. This technique, the quasi-static variation of 
parameters, was also used by Jones & Cliffe (1983). It is a crude continuation 
method, but is easily implemented using finite-difference codes. Runs were continued 
with increasing r until the collapse of the steady two-cell state was observed, after 
which either a steady four-cell state emerged or a limit-cycle behaviour was 
encountered. 



Bifurcation phenomena in TaylorXouette $ow with buoyancy effects 487 

Using these methods, the determination of the loci required a considerable number 
of computational runs. While the minimum number of runs required to determine 
any single point on the bottom portion of each locus was two, in practice four or five 
runs were required to accurately determine each critical point. Many more runs were 
then required as the aspect ratio was increased in gradual increments to find the 
upper portion of each locus. Consequently, the use of a supercomputer (CRAY 
X-MP) was essential in obtaining the results in a reasonable amount of time. 

As described above, two different methods were used to determine the critical 
points. The impulsive-run method was used to determine the lower portion of each 
locus, because i t  generally required a smaller number of runs to determine each point, 
and the convergence of each individual run was much faster compared with the 
quasi-static runs. These two factors resulted in a significant savings of CPU time. 
However, the impulsive-run technique could not be used to find the secondary flows 
above the aspect ratio corresponding to the transcritical bifurcation point. In  these 
cases, the primary flow always emerged as the steady-state solution, no matter how 
large the value of the Reynolds number. Thus, the quasi-static variation of r a t  fixed 
Re was the only alternative for locating the critical points along the upper portion 
of the locus. It is noted that this behaviour was also observed in the experiments of 
Benjamin and Mullin. 

As shown in figure 2, an excellent qualitative agreement with Benjamin’s data was 
obtained. I n  particular, the shape and extent of the cusp is identical to Benjamin’s. 
Quantitatively, though, the numerically generated cusp is shifted towards higher 
values of r. The upward shift in r represents an increase in the stability of the two- 
cell flow at  the expense of the four-cell flow. This is consistent with a decrease in the 
radius ratio 7 (recall that 7 = 0.5 in this study compared with 7 = 0.615 in 
Benjamin’s), since the change in the dimensionless wavenumber k from 7 = 0.615 to 
7 = 0.5 is less than 1% (Walowit et al. 1964). Thus, since k is non-dimensionalized by 
the gap width, the relatively larger gap width in the numerical study favours the 
development of the larger cell size in the short annulus. 

For the isothermal flow, the cusp is pointing obliquely downward. The flow at  
values of Re just to the left of this cusp comprises a weakened four-cell flow, which 
is recognized as a rudimentary version of the four-cell flow possible at higher-values 
of Re a t  the same aspect ratio. After this weak four-cell flow is established, very 
gradual increases in Re to the right of the cusp result in the appearance of a two-cell 
flow. With further increases in Re, a fully developed four-cell flow re-emerges. The 
4 - 2 4  progression of cell states with increasing Re a t  r = 3.8 is shown in figure 3. 

In figure 4, the effects of adding buoyancy to the system by heating the inner 
cylinders are examined. Shown in this figure are the loci for three fixed values of the 
Grashof number (the numerically generated isothermal flow locus is reproduced in 
figure 4 to  facilitate comparisons with the buoyant flow loci). It is observed that even 
a relatively small amount of buoyancy has a surprisingly significant effect on the 
behaviour of the flow and its exchange process, and the nature of the cusp has been 
totally changed. 

These results can be explained in terms of an unfolding of the pitchfork 
bifurcation, which arises from imperfections in the system. To demonstrate this, an 
analogy is made with an unfolding of codimension 2 :  

G(x, h, a )  = x 3 - h ~ + a ,  + a2 x*. 

a1 and a2 are functions of the imperfections, in this case the aspect ratio r and the 
buoyancy parameter Gr (the Reynolds number is represented by A ,  the bifurcation 



488 K .  X. Ball and R. Farouk 

FIGURE 3. 4-2-4 Flow transition with increasing Re at r = 3.8. with Gr = 0, (a )  Re = 70, 
( b )  80, ( c )  85. 
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FIGURE 4. Bifurcation set for the buoyant two-cell and four-cell flows. 

parameter). The state variable x can be any functional of the solution which 
discriminates between the different solution states (characterized by the number of 
Taylor cells). For example, Jones & Cliffe (1983) and Cliffe (1984) chose the radial 
velocity a t  the centre of the annulus as the state variable. 

According to Golubitsky & Sohaeffer (1985), there are essentially four different 
bifurcation diagrams that can occur as a varies. These are shown in figure 5 ,  where 
the (al,a2)-plane is divided into four regions by the two curves a1 = 0 and 
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FIGURE 5.  Unfolding of the pitchfork bifurcation : 2 4  cell exchange of priorities. 

a1 = ai/27. Along the curve a,  = 0, transcritical bifurcations are encountered, while 
hysteresis points are found along the curve a1 = &27. At the origin, where the 
imperfections in the system disappear, the symmetric pitchfork bifurcation is 
recovered. 

For the two-cell to four-cell transition, a t  sufficiently low values of r, the two-cell 
flow emerges as the primary flow upon a gradual increase in Re. This is represented 
by the bifurcation diagram in the lower right corner of figure 5 (where a1 < 0 and 
a; > 27a1). On the other hand, a four-cell flow emerges as the primary flow a t  
sufficiently high values of r. This is represented by the bifurcation diagram in the 
upper left corner of figure 5 (a,  > 0 and a; < 27a,). 

The orientation of the cusp observed in the ( R e ,  I")-plane depends upon the path 
taken in the (al, a,)-plane between these two regions. For a downward-facing cusp, 
the hysteresis point occurs at a lower value of r than the transcritical bifurcation. 
Therefore, the curve followed in the (al, a,)-plane with increasing r must pass to the 
left of the origin. By similar reasoning, the curve in the (al, a,)-plane representing the 
upward facing cusp must pass to the right of the origin. It is reasonable to assume 
that the unfolding of the pitchfork bifurcation is continuous in the auxiliary 
parameters a. Therefore, a pitchfork bifurcation must occur as the cusp changes its 
orientation from downward-facing to upward-facing with increasing Gr, and is 
represented by a curve in the (a,,a,)-plane passing through the origin. This is also 
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FIGURE 6. 24 -2  Flow transition with increasing Re at r = 4.0, with Gr = 300, ( a )  Re = 70, 
( b )  7 5 ,  (c) 85. 

shown in figure 5, together with the effects of increasing buoyancy (given by Gr) in 
the system. 

For the flows with Gr = 100, the weakened version of the four-cell flow was never 
observed. The presence of buoyancy forces has completely eliminated this mode of 
flow, and the cusp has become aligned with the Re-axis, indicating a pitchfork 
bifurcation. The physical explanation offered is that the weak, negative Taylor cell 
(the second cell up from the bottom in figure 3a) was not strong enough to force the 
buoyant flow adjacent to the heated cylinder to flow in the downward direction. For 
the sake of clarity in this discussion, a vortex will be considered to have a positive 
sense when its rotation is in the same sense as the natural convection flow, viz. when 
the flow immediately adjacent to the heated inner cylinder is in the upward (positive 
z )  direction. This effect is further enhanced as the Grashof number is increased, as 
shown in figure 4 where the exchange process is now characterized by an upward- 
pointing cusp. Thus, the hysteresis for the buoyant flows is from a two-cell flow to 
a four-cell flow, and then back to a two-cell flow. The 24-2  progression of cell states 
with increasing Re at r = 4.0, with Gr = 300, is shown in figure 6. As the increase in 
the Grashof number is continued, the primary two-cell flow dominates the system, 
and by the time Gr = 500, the cusp is no longer observable in this range of r. Indeed, 
there is no indication that any hysteresis effects remain at all. 

Another striking difference between the buoyant two-to-four cell transition and its 
isothermal counterpart is the range of r over which the transition occurs a t  fixed 
values of Re. In  the isothermal flows, this transition is always very abrupt. By 
contrast, the transition is very gradual in the buoyant flows, with an intermediate 
form occurring prior to the complete onset of the four-cell mode a t  lower values of 
Re. This gradual transition is shown in figure 7 ,  where Gr = 300 and Re = 70. The 
intermediate form is characterized by a relatively large stagnant region, where a 
negative Taylor cell is slowly forming on the inner wall of the cylinder. For the 
purposes of determining the stability locus, the first sign of this negative involution 
was used as the stability criterion. 

The last two figures presented in this section contrast the transient nature of the 
two-to-four cell transition in the isothermal and mixed convection flow situations. In 
figure 8, the loss of stability of the two-cell flow is shown a t  Re = 85 and r= 4.2, 
where the solution from r = 4.15 was used for the initial values of the calculation. 
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FIGURE 7 .  Two-to-four cell transition for buoyant flows with increasing r, a t  Re = 70 and 
Gr = 300, (a) r = 4.1, ( b )  4.2, (c) 4.3, ( d )  4.4, ( e )  4.5, (f) 4.6. 

It is observed that the development of the new pair of cells is symmetric about the 
midplane, and occurs near the interface between the two counter-rotating cells. 

By contrast, the two-to-four cell transition for the buoyant flows occurs by an 
involution of the positive cell, as shown in figure 9. This trait has been generally 
observed in all of the buoyant flows considered. The positive cells have a greater 
tendency to increase in size as the aspect ratio increases, and as they get longer, they 
become weaker near the bottom, After a certain point, the flow stagnates, allowing 
the negative Taylor cell to encroach upon it,  eventually splitting i t  in two to form the 
extra pair of cells. This phenomenon is further explained in the next section. 
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FIGURE 8. Transient development of 2 4  transition for isothermal flows, at Re = 85 and 
= 4.2 (Fourier number F o  = t v / d 2 ) ,  ( a )  Fo = 0, (b) 6.19, (c) 12.37. 

FIGURE 9. Transient development of 2 4  transition for buoyant flows, a t  Re = 85 and r = 4.05, 
with Gr = 300, ( a )  Fo = 0, (b) 1.24, (c) 1.86, ( d )  6.19. 

3.2. The four-cell to six-cell transition 
As with the two-to-four cell transitions, the purpose of the first series of computations 
was to reproduce the available experimental results for the bifurcation set in the 
(Re,  r)-plane for four-cell and six-cell flows, in order to validate the procedure used 
and to verify the accuracy of the results obtained. In  figure 10, the experimental 
results of Mullin (1982) and Mullin et al. (1982) have been reproduced, and are 
compared with the finite-difference predictions made in this study. The same 
methods of determining the primary-flow locus as described in the previous section 
were used in this case. The agreement with the experimental results of Mullin is 
observed to be quite good, both quantitatively and qualitatively. In  particular, both 
curves exhibit the same upward-pointing cusp. The cusp in the numerical studies is 
observed to be somewhat steeper, with its tip extending to approximately (Re = 70, 
r = 5.65) ,  compared with the experimental cusp, whose tip is around (Re = 85, 
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FIGURE 10. Bifurcation set for the isothermal (Gr = 0) four-cell and six-cell flows. 

r = 5.35). The reason for this is that  Mullin’s data are for a radius ratio of 7 = 0.6, 
while the numerical study assumes 7 = 0.5. The effects of decreasing 7 on the flow have 
already been discussed in the previous section. It is also pointed out that these effects 
would be expected to diminish as rincreases, since the length of each cell is a smaller 
percentage of the total annulus length, and adjustments from one particular pattern 
to another represent a less drastic change in the system. Another possible reason for 
this slight discrepancy is that the experimental measurements in the region of the 
cusp were quite sensitive (Mullin 1982), and the experimental system is subject to 
more uncontrollable disturbances and imperfections than a mathematical for- 
mulation. Thus, one would expect to obtain slightly lower stability limits for the 
secondary modes from a numerical study. Jones & Cliffe (1983) also found the cusp 
to be extended slightly in their numerical study, compared with the experimental 
case. 

A more direct comparison with experimental data is obtained from the results of 
Mullin et al. who used a radius ratio of 7 = 0.507. The agreement with the numerical 
results along the upper portion of the locus is excellent. The experimental results 
along the bottom portion of the locus, however, show an earlier loss of stability and 
collapse of the six-cell secondary flow as the Reynolds number is decreased. To 
reconcile this discrepancy, a new set of critical values was determined along the lower 
portion of the locus using the quasi-static variation of Re a t  fixed r (in contrast to 
the impulsive technique described in $3.1). The locus determined in this way is shown 
in figure 10 as a thin solid line, and is observed to coincide with the experimental 
results. The reason for this shift in the locus is described below. 

In the study by Cliffe (1988), it was observed that the six-cell secondary mode loses 
its stability, owing to asymmetric disturbances, a t  higher values of Re than those 
corresponding to the critical locus for symmetric flows. While the present study is not 
restricted to symmetric solutions, the development of the Taylor-vortex flow from an 
initial state of rest, with an impulsive start at a given value of Re, proceeds in a 
symmetric fashion from both ends (cf. Ball & Parouk 1987). In  contrast, a quasi- 
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FIGURE 1 1 ,  4-64 Flow transition with increasing Re at r = 5.2, with Cr = 0, ( a )  Re = 85, 
(b) 140, (e) 200. 

static reduction in Re would necessarily introduce asymmetric perturbations to the 
initial flow. This is a result of the interaction of an impulsive reduction in the speed 
of rotation of the inner cylinder with the established (steady-state) vorticity field, 
and is apparent by examining (9). Immediately after a quasi-static reduction in Re, 
the value of v 2 / r  will be reduced everywhere, perturbing the symmetry of the vorticity 
field through the a /&(v2 / r )  production term. 

Since the introduction of buoyancy into the Taylor experiment breaks the 
midplane symmetry of the system (Ball & Farouk 1987), no differences in the critical 
values of Re should be observed between the impulsive-start and the quasi-static 
variation methods for the mixed-convection runs. 

In  figure 11, streamlines are presented for the isothermal case (Gr = 0) with 
r = 5.2 ,  for three different values of Re (85,  140, and 200). The point (Re = 85, 
r = 5 . 2 )  lies just to the left of the state locus in figure 10, (Re = 140, r = 5.2)  lies just 
above the upper part of the locus near its relative minimum, and (Re = 200, r = 5.2)  
lies just below the upper part of the locus as it starts to increase again. Thus, r = 5.2 is 
observed to be in the region where the two modes exchange priorities, and as Re is 
decreased from Re = 200 a t  r = 5.2, the flow changes from a four-cell flow, to a six- 
cell flow, then back to a four-cell flow, as shown, 

In  figure 12, the effects of adding buoyancy to the system by heating the inner 
cylinder are examined. Shown in this figure are the loci for three fixed values of the 
Grashof number (again, the isothermal flow locus is reproduced from figure 10 to 
facilitate comparisons). As with the two-four transition, it is observed that even a 
relatively small amount of buoyancy has a significant effect on the behaviour of the 
flow and its exchange process. For a Grashof number of only Gr = 25, the locus is 
shifted substantially towards higher values of r and Re. This is especially evident 
along the upper part of the locus, where the slope is dramatically increased. 
Furthermore, the cusp is diminished in width, indicating a less distinct hysteresis 
behaviour. As the Grashof number is further increased, these effects become more 
dominant. Finally, a t  Gr = 1000, the cusp has become unobservable. 
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FIGURE 12. Bifurcation set for the buoyant four-cell and six-cell flows. 

In  figure 13, the change in the shape of the cusp with increasing buoyancy is 
explained by way of analogy with the codimension-2 unfolding of the pitchfork 
bifurcation, as was done in $3.1. In  this case, however, the four-cell primary flow 
occurring at  lower values of r is represented by the bifurcation diagram in the upper 
left region of the (a1, a,)-plane (a ,  > 0 and a: < 27a,), while the six-cell primary flow 
occurring a t  higher values of r is represented by the bifurcation diagram in the lower 
right region (a, < 0 and a: > 27a,). The curves in the (a1, a,)-plane joining these two 
regions as r is increased always pass to the left of the origin, as shown. As the 
buoyancy force is increased, the curves move further and further away from the 
origin, representing a growing imperfection in the system. 

The mixed convection case Gr = 100 is shown in figure 14, for r = 5.9 and Re = 70, 
80, and 120. These values are analogous to the results shown in figure 11,  with the 
flow changing from four cells, to six cells, and back to four cells as Re is decreased. 
The buoyancy is observed to have little noticeable effect on the six-cell flow a t  
R e  = 80, but the four-cell flows are slightly distorted. The upper pair of cells in these 
cases is somewhat larger than the bottom pair, and in the case R e  = 70, a large, 
stagnant region is present. In this region, the buoyancy is just strong enough to 
suppress the development of another pair of counter-rotating cells. 

In the transitions to a higher number of cells in buoyant flows, it is observed that 
the new pair is formed by the nucleation of a negative cell near the middle of a 
positive cell having a relatively stagnant region. This was discussed in $3.1 with 



496 K .  8. Ball and B. Parouk 

6 cells 

4 cells 

6 cells 

-4 cells 

/-, 6 cells 

-c 4 cells 

\ 

Upward cusps h 
Increasing 

6 cells 

4 cells 

G(x, A, a )  = X~ - A x  + a1 + a, x2 

a1 = f(f, Gr); a,  = g(T, Gr) 
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regards to the two-four transition. When comparing the two-four transition to the 
four-six transition, it is observed that the upper positive cell in the four-cell flow is 
the one to become unstable. Furthermore, both the negative and positive cells in the 
upper pair are extended in size as the transition is approached, while the lower pair 
remains essentially unchanged. This phenomenon can be explained by considering 
the temperature field which develops within the annulus. For this purpose, a four-cell 
flow and a six-cell flow are presented, together with their isotherms, for r = 5.1 with 
Gr = 100. The four-cell flow, shown in figure 15, is for Re = 140, while the six-cell flow 
in figure 16 is for Re = 150. These two flows bracket the critical value of Re for this 
aspect ratio and Grashof number. 

In  both of these figures, a noticeable distortion of the temperature field is 
observed, and is caused by the counter-rotating secondary flow. Consider figure 15, 
where there are two pairs of counter-rotating cells. The bottom cell is rotating in the 
counter-clockwise direction, while the cell immediately above i t  is rotating in the 
clockwise direction. Acting together, they transport the relatively hotter fluid near 
the heated inner cylinder out into the annular gap, creating a local temperature 
inversion just above the interface between the two cells. The same situation exists 
between the upper pair of cells. 

Sow, as the aspect ratio of the annulus is increased, the cells must adjust to fill the 
extra volume. One might assume that each cell would increase by an equal amount. 
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FIGURE 14. 4 4 4  Flow transition with increasing Re at f = 5.9, with Gr = 100, ( a )  Re = 70, 
(b )  80, (c) 120. 

FIGURE 15. Buoyant four-cell flow for Re = 140, Gr = 100 and r= 5.1, ( a )  streamlines, 
(b )  isotherms. 

This is more or less the case for the isothermal flows. However, in the mixed 
convection flows, there exist unstably stratified fluid layers caused by the local 
temperature inversions. This unstable stratification is confined to  the regions 
occupied by the negative Taylor cells. As a consequence of the tendency of an 
unstably stratified fluid layer to overturn, the negative cells tend to remain the same 
size. 
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FIGURE 16. Buoyant six-cell flow for Re = 150, Gr = 100 and r =  5.1, (a) 
( b )  isotherms. 

streamlines, 

An analogy is made with the case of the Rayleigh-BQnard instability in thin fluid 
layers heated from below. The critical Rayleigh numbers for these flows are based on 
the depth of the fluid. As this depth is increased, the flows become less stable. The 
depth of the fluid layer is analogous to the volume occupied by the negative Taylor 
cells. From a thermal stability perspective, a smaller volume represents a more stable 
arrangement. In  spite of this, when there are more than one negative Taylor cells, as 
in the four-cell flow, the uppermost cell is still observed to increase in size. For this 
cell, there is an additional consideration, namely, the presence of the upper 
stationary end. It is recalled that there is a contribution to the negative vorticity a t  
the top of the annulus due to the Ekman layers (cf. Snyder & Lambert 1966). Also, 
the flow immediately adjacent to the ends is less vigorous than in the central part of 
the annulus. These two effects combine to lessen the thermal instability caused by 
the Taylor cells near the top of the annulus. 

4. Conclusion 
In the idealized Taylor-vortex problem, the annulus is assumed to be of infinite 

length. The resulting flow is periodic in the axial direction, and arises from symmetric 
supercritical bifurcations from the base flow. When a finite geometry is considered, 
the solutions generally cannot be periodic in z ,  and the symmetry of the problem is 
broken (Benjamin 1 9 7 8 ~ ) .  Furthermore, the base flow is altered by the presence of 
the ends, where a no-slip boundary condition is enforced. This imperfection in the 
system leads to a folding of the primary-flow locus as the aspect ratio and Reynolds 
numbers are varied, and the exchange of the primary mode from one array of cells 
to another is accompanied by a hysteresis. This hysteresis is indicated by a cusp 
pointing obliquely to the Re-axis in the (Re, f )-control plane. 

In  this paper, the development of the primary flow as the aspect ratio is varied was 
investigated for both buoyant and isothermal flows, in order to ascertain the role of 
buoyancy in the bifurcation phenomena. Two different ranges of the aspect ratio 
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were studied, corresponding to the 2 4  and 4-6 cell transitions in the flow. For 
isothermal flows, the cusp characterizing the 2 4  cell transition pointed downward, 
while the 4 4  cell transition was characterized by an upward-facing cusp. When 
buoyancy was introduced to the system (by heating the inner cylinder), the 
downward facing cusp in the 2 4  cell transition began to align with the Re-axis. At 
Gr = 100, a pitchfork bifurcation was indicated, and then the cusp pointed upward 
as Gr was further increased. I n  both cases, as Gr was increased, the loci were shifted 
towards higher values of r. This shift was particularly large along the upper portion 
of each locus. Finally, the hysteresis of the flow was diminished with increasing Gr, 
as indicated by the width of the cusp. Indeed, at sufficiently high values of Gr, the 
cusp was unobservable. 

The physical interpretation of the observed effects of buoyancy on the behaviour 
of these flows is difficult. The presence of buoyancy represents another imperfection 
in the system, as the action of the gravitational force is always vertically downward. 
Furthermore, as with the annulus ends, the buoyancy changes the base flow by 
inducing convective motion of the fluid. Different imperfections may change the 
bifurcation curves in different ways, and the mathematical theory cannot predict the 
behaviour of systems with more than one imperfection except in very general terms 
(Drazin & Reid 1984). 

Despite these shortcomings of the theory, some insight to the effects of buoyancy 
on the bifurcation phenomena can be obtained by considering the actual behaviour 
of the flow. First, it has been observed that the presence of buoyancy tends to assist 
the Taylor cells whose direction of circulation is upward along the heated inner 
cylinder (Ball & Farouk 1986). As the aspect ratio is increased in a buoyant flow, the 
system adjusts to the increased volume by a growth in the size of those positive cells. 
By contrast, in the isothermal flow the adjustment is uniform in each counter- 
rotating pair of cells. Since the positive cells in the buoyant flows have been observed 
to remain stable a t  sizes of over three times the size of the negative cells (Ball 1987), 
the buoyancy clearly favours the Taylor-cell state with the lower number of cells. 
This results in an upward shift of the primary-flow locus. 

Another consideration is the effect of the temperature gradient on the stability of 
the various cellular modes of flow. Local inversions of the temperature field exist in 
the neighbourhood of each negatively rotating cell, and these unstably stratified 
regions tend to suppress the growth of those cells, contributing to the increased 
stability of the lower-wavenumber flows. Finally, the negative temperature gradient 
across the annulus has a stabilizing effect on the flow, as the lighter fluid particles 
near the heated cylinder surface have a smaller centrifugal force exerted on them. 
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Science Foundation (Grant ECS-8515763). The authors appreciate the extremely 
thoughtful and helpful review provided by one of the referees. K. S. B. would also like 
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